## **ESD** Resin

## Ein robustes ESD-ableitfähiges Material zur Verbesserung Ihrer Arbeitsabläufe in der Elektronikherstellung

Vermindern Sie das Risiko und erhöhen Sie die Fertigungsausbeute durch den 3D-Druck von maßangefertigten Werkzeugen, Halterungen und Vorrichtungen mit ESD Resin. Damit sind kritische Elektronikkomponenten vor statischer Entladung geschützt. ESD Resin ist eine kostengünstige Lösung für die Herstellung von Teilen zur Ableitung statischer Aufladung, die für den Einsatz in der Werkshalle entworfen wurden.

Antistatische Prototypen und Endverbrauchsteile

Gehäuse für empfindliche Elektronik

Werkzeuge, Halterungen und Vorrichtungen für die Elektronikfertigung





## FLESDS01

Erstellt am: 12/01/2021 Revision 01: 12/01/2021 Nach unserer Kenntnis sind die angegebenen Informationen korrekt. Dennoch übernimmt Formlabs Inc. keine explizite oder implizite Garantie für die Genauigkeit der Ergebnisse, die durch die Nutzung erzielt werden.

| Materialeigenschaften 1,2                    |                              | METHODE          |
|----------------------------------------------|------------------------------|------------------|
|                                              | Nachgehärtet                 |                  |
| Mechanische Eigenschaften <sup>1,2</sup>     |                              | METHODE          |
| Maximale Zugfestigkeit                       | 44,2 MPa                     | ASTM D638-14     |
| Zugmodul                                     | 1,937 GPa                    | ASTM D638-14     |
| Bruchdehnung                                 | 12 %                         | ASTM D638-14     |
| Biegeeigenschaften <sup>1,2</sup>            |                              | METHODE          |
| Biegebruchfestigkeit                         | 61 MPa                       | ASTM D790-17     |
| Biegemodul                                   | 1,841 GPa                    | ASTM D790-17     |
| Aufpralleigenschaften 1,2                    |                              | METHODE          |
| Schlagzähigkeit nach Izod                    | 26 J/m                       | ASTM D256-10     |
| Schlagzähigkeit nach Izod (ungekerbte Probe) | 277 J/m                      | ASTM D4812-11    |
| Thermische Eigenschaften 1,2                 |                              | METHODE          |
| Wärmeformbeständigkeitstemp. bei 1,8 MPa     | 54,2 °C                      | ASTM D648-18     |
| Wärmeformbeständigkeitstemp. bei 0,45 MPa    | 62,2 °C                      | ASTM D648-18     |
| Wärmeausdehnung                              | 123,7 μm/m/°C                | ASTM E813-13     |
| Elektrische Eigenschaften <sup>1,2</sup>     |                              | METHODE          |
| Spezifischer Oberflächenwiderstand           | $10^{5} - 10^{8} \Omega/sq$  | ANSI/ESD 11.11 3 |
| Volumenwiderstand                            | $10^{5} - 10^{7} \Omega$ -cm | ANSI/ESD 11.11 3 |
| Physikalische Eigenschaften <sup>1,2</sup>   |                              | METHODE          |
| Dichte                                       | 1,116 g/cm <sup>3</sup>      | ASTM D792        |
| Härtegrad                                    | 90 Shore D                   | ASTM D2240       |

## LÖSUNGSMITTELKOMPATIBILITÄT

Gewichtszunahme in Prozent über einen Zeitraum von 24 Stunden für einen gedruckten und nachgehärteten Würfel von 1 x 1 x 1 cm im jeweiligen Lösungsmittel:

| Lösungsmittel                  | Gewichtszunahme in % über 24 Std. | Lösungsmittel                      | Gewichtszunahme in % über 24 Std. |
|--------------------------------|-----------------------------------|------------------------------------|-----------------------------------|
| Essigsäure (5 %)               | 0,5                               | Schweres Mineralöl                 | 0,1                               |
| Aceton                         | 13,1                              | Leichtes Mineralöl                 | 0,1                               |
| Bleichmittel ca. 5 % NaOCl     | 0,5                               | Salzlösung (3,5 % NaCl)            | 0,6                               |
| Butylacetat                    | 3,8                               | Skydrol 5                          | 0,5                               |
| Dieselkraftstoff               | 0,2                               | Natriumhydroxid (0,025 %, pH = 10) | 0,7                               |
| Diethylenglycolmonomethylether | 3,6                               | Starke Säure (Chlorwasserstoff)    | 1,4                               |
| Hydrauliköl                    | 0,2                               | TPM                                | 0,6                               |
| Wasserstoffperoxid (3 %)       | 0,6                               | Wasser                             | 0,7                               |
| Isooctan                       | < 0,1                             | Xylol                              | 1,60                              |
| Isopropylalkohol               | 2,6                               |                                    |                                   |

Materialeigenschaften können abhängig von Druckgeometrie, Druckausrichtung, Druckeinstellungen, Temperatur und Desinfektions- oder Sterilisationsmethoden variieren.

<sup>&</sup>lt;sup>2</sup> Daten für nachgehärtete Proben wurden mit einer Zugprobe des Typs IV (ASTM) ermittelt, die auf einem Form 3 Drucker mit ESD Resin mit der Einstellung 100 µm gednuckt, in einem Form Wash 20 Minuten lang in >99%jegen lsopropylalkohol gewaschen und in einem Form Cure bei 70 °C für 60 Minuten lang nachgehärtet wurde.